Collaborative robots have captured the public’s imagination for decades, and it’s no wonder — machines can achieve incredible feats by working together as a team. One need look no further for evidence than a new study from the MIT’s Computer Science and Artificial Intelligence Lab (CSAIL), which was supported in part by the National Science Foundation and Amazon’s robotics division. Building on a project that kicked off six years ago, researchers developed self-assembling cubes capable of climbing over and around one another, leaping through the air, and rolling across the ground.

It’s not the first time a team at MIT CSAIL has investigated modular robots tailored to specific tasks. A paper and accompanying blog post published in August detailed autonomous robotic boats, or roboats, designed to shapeshift at will across bodies of water by reassembling into different configurations.

“The unique thing about our approach is that it’s inexpensive, robust, and potentially easier to scale to a million modules,” CSAIL PhD candidate and lead author on the study John Romanishin said in a statement. “[The cubes] can move in a general way. Other robotic systems have much more complicated movement mechanisms that require many steps, but our system is more scalable and cost-effective.”

MIT CSAIL blocks

The 50-millimeter blocks, dubbed M-Blocks, communicate using barcode-like patterns (MFTags) on each of their faces and edges. The patterns are created by arrangements of permanent magnets that encode information passiv